Benchmark Study of the Electronic States of the LiRb Molecule: Ab Initio Calculations with the Fock Space Coupled Cluster Approach

Author:

Skrzyński Grzegorz1ORCID,Musial Monika1ORCID

Affiliation:

1. Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland

Abstract

Accurate potential energy curves (PECs) are determined for the twenty-two electronic states of LiRb. In contrast to previous studies, the applied approach relies on the first principle calculations involving correlation among all electrons. The current methodology is founded on the multireference coupled cluster (CC) scheme constructed within the Fock space (FS) formalism, specifically for the (2,0) sector. The FS methodology is established within the framework of the intermediate Hamiltonian formalism and offers an intruder-free, efficient computational scheme. This method has a distinctive feature that, when applied to the doubly ionized system, provides the characteristics of the neutral case. This proves especially beneficial when investigating PECs in situations where a closed-shell molecule dissociates into open-shell fragments, yet its double positive ion forms closed-shell species. In every instance, we successfully computed continuous PECs spanning the entire range of interatomic distances, from the equilibrium to the dissociation limit. Moreover, the spectroscopic characteristic of various electronic states is presented, including relativistic effects. Relativistic corrections included at the third-order Douglas-Kroll level have a non-negligible effect on the accuracy of the determined spectroscopic constants.

Funder

Research Excellence Initiative of the University of Silesia in Katowice, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3