Theoretical Insights on ORR Activity of Sn-N-C Single-Atom Catalysts

Author:

Zhang Yuhui1,Li Boyang2,Su Yaqiong2ORCID

Affiliation:

1. School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia

2. School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The advancement of efficient and stable single-atom catalysts (SACs) has become a pivotal pursuit in the field of proton exchange membrane fuel cells (PEMFCs) and metal-air batteries (MABs), aiming to enhance the utilization of clean and sustainable energy sources. The development of such SACs has been greatly significant in facilitating the oxygen reduction reaction (ORR) process, thereby contributing to the progress of these energy conversion technologies. However, while transition metal-based SACs have been extensively studied, there has been comparatively less exploration of SACs based on p-block main-group metals. In this study, we conducted an investigation into the potential of p-block main-group Sn-based SACs as a cost-effective and efficient alternative to platinum-based catalysts for the ORR. Our approach involved employing density functional theory (DFT) calculations to systematically examine the catalyst properties of Sn-based N-doped graphene SACs, the ORR mechanism, and their electrocatalytic performance. Notably, we employed an H atom-decorated N-based graphene matrix as a support to anchor single Sn atoms, creating a contrast catalyst to elucidate the differences in activity and properties compared to pristine Sn-based N-doped graphene SACs. Through our theoretical analysis, we gained a comprehensive understanding of the active structure of Sn-based N-doped graphene electrocatalysts, which provided a rational explanation for the observed high four-electron reactivity in the ORR process. Additionally, we analyzed the relationship between the estimated overpotential and the electronic structure properties, revealing that the single Sn atom was in a +2 oxidation state based on electronic analysis. Overall, this work represented a significant step towards the development of efficient and cost-effective SACs for ORR which could alleviate environmental crises, advance clean and sustainable energy sources, and contribute to a more sustainable future.

Funder

Xi’an Jiaotong University

Xiamen University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3