Binding and Degradation Reaction of Hydroxide Ions with Several Quaternary Ammonium Head Groups of Anion Exchange Membranes Investigated by the DFT Method

Author:

Karibayev MiratORCID,Myrzakhmetov Bauyrzhan,Kalybekkyzy SandugashORCID,Wang YanweiORCID,Mentbayeva AlmagulORCID

Abstract

Commercialization of anion exchange membrane fuel cells (AEMFCs) has been limited due to the chemical degradation of various quaternary ammonium (QA) head groups, which affects the transportation of hydroxide (OH−) ions in AEMs. Understanding how various QA head groups bind and interact with hydroxide ions at the molecular level is of fundamental importance to developing high-performance AEMs. In this work, the binding and degradation reaction of hydroxide ions with several QA head groups—(a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO), (c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium (TMHA)—are investigated using the density functional theory (DFT) method. Results of binding energies (“∆” EBinding) show the following order of the binding strength of hydroxide ions with the six QA head groups: (a) > (c) > (f) > (d) > (e) > (b), suggesting that the group (b) has a high transportation rate of hydroxide ions via QA head groups of the AEM. This trend is in good agreement with the trend of ion exchange capacity from experimental data. Further analysis of the absolute values of the LUMO energies for the six QA head groups suggests the following order for chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Considering the comprehensive studies of the nucleophilic substitution (SN2) degradation reactions for QA head groups (c) and (f), the chemical stability of QA (f) is found to be higher than that of QA (c), because the activation energy (“∆” EA) of QA (c) is lower than that of QA (f), while the reaction energies (“∆” ER) for QA (c) and QA (f) are similar at the different hydration levels (HLs). These results are also in line with the trends of LUMO energies and available chemical stability data found through experiments.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Nazarbayev University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3