Identification of Inhibitors Targeting Ferredoxin-NADP+ Reductase from the Xanthomonas citri subsp. citri Phytopathogenic Bacteria

Author:

Martínez-Júlvez Marta,Goñi Guillermina,Pérez-Amigot Daniel,Laplaza Rubén,Ionescu Irina,Petrocelli Silvana,Tondo María,Sancho JavierORCID,Orellano Elena,Medina MilagrosORCID

Abstract

Ferredoxin-NADP(H) reductases (FNRs) deliver NADPH or low potential one-electron donors to redox-based metabolism in plastids and bacteria. Xanthomonas citri subsp. citri (Xcc) is a Gram-negative bacterium responsible for citrus canker disease that affects commercial citrus crops worldwide. The Xcc fpr gene encodes a bacterial type FNR (XccFPR) that contributes to the bacterial response to oxidative stress conditions, usually found during plant colonization. Therefore, XccFPR is relevant for the pathogen survival and its inhibition might represent a strategy to treat citrus canker. Because of mechanistic and structural differences from plastidic FNRs, XccFPR is also a potential antibacterial target. We have optimized an activity-based high-throughput screening (HTS) assay that identifies XccFPR inhibitors. We selected 43 hits from a chemical library and narrowed them down to the four most promising inhibitors. The antimicrobial effect of these compounds was evaluated on Xcc cultures, finding one with antimicrobial properties. Based on the functional groups of this compound and their geometric arrangement, we identified another three XccFPR inhibitors. Inhibition mechanisms and constants were determined for these four XccFPR inhibitors. Their specificity was also evaluated by studying their effect on the plastidic Anabaena PCC 7119 FNR, finding differences that can become interesting tools to discover Xcc antimicrobials.

Funder

MINECO

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3