Metabolite Variation between Nematode and Bacterial Seed Galls in Comparison to Healthy Seeds of Ryegrass Using Direct Immersion Solid-Phase Microextraction (DI-SPME) Coupled with GC-MS

Author:

Koli PushpendraORCID,Agarwal ManjreeORCID,Kessell David,Mahawar Shalini,Du XinORCID,Ren YonglinORCID,McKirdy Simon J.ORCID

Abstract

Annual ryegrass toxicity (ARGT) is an often-fatal poisoning of livestock that consume annual ryegrass infected by the bacterium Rathayibacter toxicus. This bacterium is carried into the ryegrass by a nematode, Anguina funesta, and produces toxins within seed galls that develop during the flowering to seed maturity stages of the plant. The actual mechanism of biochemical transformation of healthy seeds to nematode and bacterial gall-infected seeds remains unclear and no clear-cut information is available on what type of volatile organic compounds accumulate in the respective galls. Therefore, to fill this research gap, the present study was designed to analyze the chemical differences among nematode galls (A. funesta), bacterial galls (R. toxicus) and healthy seeds of annual ryegrass (Lolium rigidum) by using direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The method was optimized and validated by testing its linearity, sensitivity, and reproducibility. Fifty-seven compounds were identified from all three sources (nematode galls, bacterial galls and healthy seed), and 48 compounds were found to be present at significantly different (p < 0.05) levels in the three groups. Five volatile organic compounds (hexanedioic acid, bis(2-ethylhexyl) ester), (carbonic acid, but-2-yn-1-yl eicosyl ester), (fumaric acid, 2-ethylhexyl tridec-2-yn-1-yl ester), (oct-3-enoylamide, N-methyl-N-undecyl) and hexacosanoic acid are the most frequent indicators of R. toxicus bacterial infection in ryegrass, whereas the presence of 15-methylnonacosane, 13-methylheptacosane, ethyl hexacosyl ether, heptacosyl acetate and heptacosyl trifluoroacetate indicates A. funesta nematode infestation. Metabolites occurring in both bacterial and nematode galls included batilol (stearyl monoglyceride) and 9-octadecenoic acid (Z)-, tetradecyl ester. Among the chemical functional group, esters, fatty acids, and alcohols together contributed more than 70% in healthy seed, whereas this contribution was 61% and 58% in nematode and bacterial galls, respectively. This study demonstrated that DI-SPME is a valid technique to study differentially expressed metabolites in infected and healthy ryegrass seed and may help provide better understanding of the biochemical interactions between plant and pathogen to aid in management of ARGT.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference50 articles.

1. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (L olium perenne (L.));Hegarty;Plant Biotechnol. J.,2013

2. Partition of dietary energy by sheep fed fresh ryegrass (Lolium perenne) with a wide-ranging composition and quality;Waghorn;Anim. Prod. Sci.,2019

3. Yield and structural composition of oat and ryegrass subjected to different periods of cutting and nitrogen fertilization;Cassol;Rev. Ceres,2011

4. Genetic linkage mapping of an annual× perennial ryegrass population;Warnke;Theor. Appl. Genet.,2004

5. (2021, May 22). Advanta Advanta Winter Forages. Available online: http://www.nutrifeed.in/ppt/Advanta%20-%20Winter%20Forages.pdf.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3