A Heterostructure Photoelectrode Based on Two-Dimensional Covalent Organic Framework Film Decorated TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Hydrogen Generation

Author:

Zhang Yue,Li Yujie,Yu Jing,Sun BingORCID,Shang Hong

Abstract

The well-defined heterostructure of the photocathode is desirable for photoelectrochemically producing hydrogen from aqueous solutions. Herein, enhanced heterostructures were fabricated based on typical stable covalent organic framework (TpPa-1) films and TiO2 nanotube arrays (NTAs) as a proof-of-concept model to tune the photoelectrochemical (PEC) hydrogen generation by tailoring the photoelectrode microstructure and interfacial charge transport. Ultrathin TpPa-1 films were uniformly grown on the surface of TiO2 NTAs via a solvothermal condensation of building blocks by tuning the monomer concentration. The Pt1@TpPa-1/TiO2-NTAs photoelectrode with single-atom Pt1 as a co-catalyst demonstrated improved visible-light response, enhanced photoconductance, lower onset potential, and decreased Tafel slope value for hydrogen evolution. The hydrogen evolution rate of the Pt1@TpPa-1/TiO2-NTAs photoelectrode was five times that of Pt1@TpPa-1 under AM 1.5 simulated sunlight irradiation and the bias voltage of 0 V. A lower overpotential was recorded as 77 mV@10 mA cm−2 and a higher photocurrent density as 1.63 mA cm−2. The hydrogen evolution performance of Pt1@TpPa-1/TiO2-NTAs photoelectrodes may benefit from the well-matched band structures, effective charge separation, lower interfacial resistance, abundant interfacial microstructural sites, and surficial hydrophilicity. This work may raise a promising way to design an efficient PEC system for hydrogen evolution by tuning well-defined heterojunctions and interfacial microstructures.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3