The Inhibition of Mitogen-Activated Protein Kinases (MAPKs) and NF-κB Underlies the Neuroprotective Capacity of a Cinnamon/Curcumin/Turmeric Spice Blend in Aβ-Exposed THP-1 Cells

Author:

Maugeri Alessandro1ORCID,Russo Caterina2ORCID,Patanè Giuseppe Tancredi2,Barreca Davide2ORCID,Mandalari Giuseppina2ORCID,Navarra Michele2ORCID

Affiliation:

1. Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy

2. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by an increased level of β-amyloid (Aβ) protein deposition in the brain, yet the exact etiology remains elusive. Nowadays, treatments only target symptoms, thus the search for novel strategies is constantly stimulated, and looking to natural substances from the plant kingdom. The aim of this study was to investigate the neuroprotective effects of a spice blend composed of cinnamon bark and two different turmeric root extracts (CCSB) in Aβ-exposed THP-1 cells as a model of neuroinflammation. In abiotic assays, CCSB demonstrated an antioxidant capacity up to three times stronger than Trolox in the ORAC assay, and it reduced reactive oxygen species (ROS) induced by the amyloid fragment in THP-1 cells by up to 39.7%. Moreover, CCSB lowered the Aβ stimulated secretion of the pro-inflammatory cytokines IL-1β and IL-6 by up to 24.9% and 43.4%, respectively, along with their gene expression by up to 25.2% and 43.1%, respectively. The mechanism involved the mitogen-activated protein kinases ERK, JNK and p38, whose phosphorylation was reduced by up to 51.5%, 73.7%, and 58.2%, respectively. In addition, phosphorylation of p65, one of the five components forming NF-κB, was reduced by up to 86.1%. Our results suggest that CCSB can counteract the neuroinflammatory stimulus induced by Aβ-exposure in THP-1 cells, and therefore can be considered a potential candidate for AD management.

Funder

NeoLife International LLC

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference60 articles.

1. Gauthier, S., Rosa-Neto, P., Morais, J.A., and Webster, C. (2021). World Alzheimer Report 2021: Journey through the Diagnosis of Dementia, Alzheimer’s Disease International.

2. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention;Zhang;J. Prev. Alzheimers Dis.,2021

3. (2023). 2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 19, 1598–1695.

4. Neuroinflammation in Alzheimer’s disease;Heneka;Lancet Neurol.,2015

5. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease;Cai;Int. J. Neurosci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3