UHPLC-MS-Based Metabolomics Reveal the Potential Mechanism of Armillaria mellea Acid Polysaccharide in and Its Effects on Cyclophosphamide-Induced Immunosuppressed Mice

Author:

Li Ying1,Li Qingqing1,Niu Huazhou1,Li Hui1,Jiao Lili1,Wu Wei1

Affiliation:

1. Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China

Abstract

Armillaria mellea (Vahl) P. Kumm is commonly used for food and pharmaceutical supplements due to its immune regulatory function, and polysaccharides are one of its main components. The aim of this research is to study the immunological activity of the purified acidic polysaccharide fraction, namely, AMPA, isolated from Armillaria mellea crude polysaccharide (AMP). In this study, a combination of the immune activity of mouse macrophages in vitro and serum metabonomics in vivo was used to comprehensively explore the cell viability and metabolic changes in immune-deficient mice in the AMPA intervention, with the aim of elucidating the potential mechanisms of AMPA in the treatment of immunodeficiency. The in vitro experiments revealed that, compared with LPS-induced RAW264.7, the AMPA treatment elevated the levels of the cellular immune factors IL-2, IL-6, IgM, IgA, TNF-α, and IFN-γ; promoted the expression of immune proteins; and activated the TLR4/MyD88/NF-κB signaling pathway to produce immunological responses. The protein expression was also demonstrated in the spleen of the cyclophosphamide immunosuppressive model in vivo. The UHPLC-MS-based metabolomic analysis revealed that AMPA significantly modulated six endogenous metabolites in mice, with the associated metabolic pathways of AMPA for treating immunodeficiency selected as potential therapeutic biomarkers. The results demonstrate that phosphorylated acetyl CoA, glycolysis, and the TCA cycle were mainly activated to enhance immune factor expression and provide immune protection to the body. These experimental results are important for the development and application of AMPA as a valuable health food or drug that enhances immunity.

Funder

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3