Photoelectrocatalytic Processes of TiO2 Film: The Dominating Factors for the Degradation of Methyl Orange and the Understanding of Mechanism

Author:

Xiong Yuhui1,Ma Sijie2,Hong Xiaodong2ORCID,Long Jiapeng1ORCID,Wang Guangjin2

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

2. School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528051, China

Abstract

Various thicknesses of TiO2 films were prepared by the sol–gel method and spin-coating process. These prepared TiO2 films exhibit thickness-dependent photoelectrochemical performance. The 1.09-μm-thickTiO2 film with 20 spin-coating layers (TiO2-20) exhibits the highest short circuit current of 0.21 mAcm−2 and open circuit voltage of 0.58 V among all samples and exhibits a low PEC reaction energy barrier and fast kinetic process. Photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TiO2 films was carried out under UV light. The roles of bias, film thickness, pH value, and ion properties were systematically studied because they are the four most important factors dominating the PEC performance of TiO2 films. The optimized values of bias, film thickness, and pH are 1.0 V, 1.09 μm, and 12, respectively, which were obtained according to the data of the PEC degradation of MO. The effect of ion properties on the PEC efficiency of TiO2-20 was also analyzed by using halide as targeted ions. The “activated” halide ions significantly promoted the PEC efficiency and the order was determined as Br > Cl > F. The PEC efficiency increased with increasing Cl content, up until the optimized value of 30 × 10−3 M. Finally, a complete degradation of MO by TiO2-20 was achieved in 1.5 h, with total optimization of the four factors: 1.0 V bias, 1.09-μm-thick, pH 12, and 30 × 10−3 M Cl ion content. The roles of reactive oxygen species and electric charge of photoelectrodes were also explored based on photoelectrochemical characterizations and membrane-separated reactors. Hydrogen peroxide, superoxide radical, and hydroxyl radical were found responsible for the decolorization of MO.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3