Seasonal Variability of Volatile Components in Calypogeia integristipula

Author:

Wawrzyniak Rafał1ORCID,Guzowska Małgorzata1ORCID,Wasiak Wiesław1ORCID,Jasiewicz Beata1ORCID,Bączkiewicz Alina2ORCID,Buczkowska Katarzyna2ORCID

Affiliation:

1. Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

2. Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland

Abstract

Liverworts contain a large number of biologically active compounds that are synthesised and stored in their oil bodies. However, knowledge about the chemical composition of individual species is still incomplete. The subject of the study was Calypogeia integristipula, a species representing leafy liverworts. Plant material for chemotaxonomic studies was collected from various locations in Poland. The chemical composition was determined in 74 samples collected from the natural environment in 2021 and 2022 in three growing seasons: spring, summer and autumn, and for comparison with samples originating from in vitro culture. The plants were classified as Calypogeia integristipula on the basis of morphological characteristics, oil bodies, and DNA markers. The volatile organic compounds (VOCs) from the biological material were extracted by headspace solid phase microextraction (HS-SPME). The samples were then analysed by gas chromatography–mass spectrometry (GC-MS). A total of 79 compounds were detected, of which 44 compounds were identified. The remaining compounds were described using the MS fragmentation spectrum. Cyclical changes in the composition of compounds associated with the growing season of Calypogeia integristipula were observed. Moreover, samples from in vitro culture and samples taken from the natural environment were shown to differ in the composition of chemical compounds. In terms of quantity, among the volatile compounds, compounds belonging to the sesquiterpene group (46.54–71.19%) and sesqiuterpenoid (8.12–22.11%) dominate. A smaller number of compounds belong to aromatic compounds (2.30–10.96%), monoterpenes (0.01–0.07%), monoterpenoids (0.02–0.33%), and aliphatic hydrocarbons (1.11–6.12%). The dominant compounds in the analysed liverworts were: anastreptene (15.27–31.14%); bicyclogermacrene (6.99–18.09%), 4,5,9,10-dehydro-isolongifolene (2.00–8.72%), palustrol (4.95–9.94%), spathulenol (0.44–5.11%).

Funder

National Science Centre

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference38 articles.

1. Mues, R. (2000). Bryophyte Biology, Cambridge University Press.

2. Chemical constituents of the bryophytes;Herz;Progress in the Chemistry of Organic Natural Products,1995

3. Asakawa, Y., Ludwiczuk, A., and Nagashima, F. (2013). Chemical Constituences of Bryophytes. Bio- and Chemical Diversity, Biological Activity, and Chemosystematics, Springer.

4. Chemosystematics of the Hepaticae;Asakawa;Phytochemistry,2004

5. Phytochemical and biological studies of bryophytes;Asakawa;Phytochemistry,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3