Batch Preparation and Performance Study of Boehmite-Based Electrospun Nanofiber Separators for Lithium-Ion Batteries

Author:

Ding Wenfei1,Liu Yuxing1,Xu Lan12ORCID

Affiliation:

1. National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China

2. Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China

Abstract

The design and preparation of high-performance separators for lithium-ion batteries (LIBs) have far-reaching practical significance in enhancing the overall performance of LIBs. Electrospun nanofiber separators (ENSs) have the characteristics of large specific surface area, high porosity, small pore size and good affinity with the electrolyte, making them become ideal candidates for LIB separators. In this work, polyacrylonitrile (PAN)/polyurethane (PU) (PAU) ENSs loaded with boehmite (BM) particles (BM/PAU ENSs) were mass-produced using spherical section free surface electrospinning (SSFSE), and used as LIB separators. Their morphology, structures and performances were tested and characterized. The results showed that all BM/PAU ENSs maintained excellent thermal dimensional stability in the range of 140–180 °C, and had good electrolyte wettability and high porosity. The composite BM/PAU-2 ENS with the best performance had a porosity of 52.5%, an electrolyte uptake rate of 822.1%, and an ionic conductivity of 1.97 mS/cm. Additionally, the battery assembled with BM/PAU-2 separator also demonstrated best electrochemical performance, cycling performance, and rate capability, with a capacity retention rate of 94.4% after 80 cycles at 0.5 C, making it a promising high-performance separator for LIBs.

Funder

National Natural Science Foundation of China

Jiangsu Higher Education Institutions of China

Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3