Affiliation:
1. National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
2. Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
Abstract
The design and preparation of high-performance separators for lithium-ion batteries (LIBs) have far-reaching practical significance in enhancing the overall performance of LIBs. Electrospun nanofiber separators (ENSs) have the characteristics of large specific surface area, high porosity, small pore size and good affinity with the electrolyte, making them become ideal candidates for LIB separators. In this work, polyacrylonitrile (PAN)/polyurethane (PU) (PAU) ENSs loaded with boehmite (BM) particles (BM/PAU ENSs) were mass-produced using spherical section free surface electrospinning (SSFSE), and used as LIB separators. Their morphology, structures and performances were tested and characterized. The results showed that all BM/PAU ENSs maintained excellent thermal dimensional stability in the range of 140–180 °C, and had good electrolyte wettability and high porosity. The composite BM/PAU-2 ENS with the best performance had a porosity of 52.5%, an electrolyte uptake rate of 822.1%, and an ionic conductivity of 1.97 mS/cm. Additionally, the battery assembled with BM/PAU-2 separator also demonstrated best electrochemical performance, cycling performance, and rate capability, with a capacity retention rate of 94.4% after 80 cycles at 0.5 C, making it a promising high-performance separator for LIBs.
Funder
National Natural Science Foundation of China
Jiangsu Higher Education Institutions of China
Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation