Affiliation:
1. Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
Abstract
The widespread application of fuel cells is hampered by the sluggish kinetics of the oxygen reduction reaction (ORR), which traditionally necessitates the use of high-cost platinum group metal catalysts. The indispensability of these metal catalysts stems from their ability to overcome kinetic barriers, but their high cost and scarcity necessitate alternative strategies. In this context, porous organic polymers (POPs), which are built up from the molecular level, are emerging as promising precursors to produce carbonaceous catalysts owning to their cost-effectiveness, high electrical conductivity, abundant active sites and extensive surface area accessibility. To enhance the intrinsic ORR activity and optimize the performance of these electrocatalysts, recognizing, designing, and increasing the density of active sites are identified as three crucial steps. These steps, which form the core of our review, serve to elucidate the link between the material structure design and ORR performance evaluation, thereby providing valuable insights for ongoing research in the field. Leveraging the precision of polymer skeletons based on molecular units, POP-derived carbonaceous catalysts provide an excellent platform for in-depth exploration of the role and working mechanism for the specific active site during the ORR process. In this review, the recent advances pertaining to the synthesis techniques and electrochemical functions of various types of active sites, pinpointed from POPs, are systematically summarized, including heteroatoms, surficial substituents and edge/defects. Notably, the structure–property relationship, between these active sites and ORR performance, are discussed and emphasized, which creates guidelines to shed light on the design of high-performance ORR electrocatalysts.
Funder
National Natural Science Foundation of China
Science and Technology Project of Hebei Education Department
Natural Science Foundation of Hebei Province
Talents Introduction Plan of Hebei Agricultural University
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science