Abstract
Drug design is a time-consuming and cumbersome process due to the vast search space of drug-like molecules and the difficulty of investigating atomic and electronic interactions. The present paper proposes a computational drug design workflow that combines artificial intelligence (AI) methods, i.e., an evolutionary algorithm and artificial neural network model, and molecular dynamics (MD) simulations to design and evaluate potential drug candidates. For the purpose of illustration, the proposed workflow was applied to design drug candidates against the main protease of severe acute respiratory syndrome coronavirus 2. From the ∼140,000 molecules designed using AI methods, MD analysis identified two molecules as potential drug candidates.
Funder
Danish Councils for Independent Research
Volkswagen Foundation
Deutsche Forschungsgemeinschaft
Ministry for science and culture of Lower Saxony
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献