Abstract
Here we focus on the thermal and variable temperature electrochemical stabilities of two ionic liquids (ILs) having a common tributyloctyl phosphonium cation [P4,4,4,8]+ and two different orthoborate anions: bis(mandelato)borate [BMB]− and bis(salicylato)borate [BScB]−. The thermo-gravimetric analysis data suggest that [P4,4,4,8][BScB] is thermally more stable than [P4,4,4,8][BMB] in both nitrogen atmosphere and air, while the impedance spectroscopy reveals that [P4,4,4,8][BScB] has higher ionic conductivity than [P4,4,4,8][BMB] over the whole studied temperature range. In contrast, the electrochemical studies confirm that [P4,4,4,8][BMB] is more stable and exhibits a wider electrochemical stability window (ESW) on a glassy carbon electrode surface as compared to [P4,4,4,8][BScB]. A continuous decrease in the ESWs of both ILs is observed as a function of operation temperature.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献