A High-Performance Mn/TiO2 Catalyst with a High Solid Content for Selective Catalytic Reduction of NO at Low-Temperatures

Author:

Yang Lei1,Wang Zhen1,Xu Bing1,Hu Jie1,Pan Dehua1,Fan Guozhi1,Zhang Lei1ORCID,Zhou Ziyang1

Affiliation:

1. Hubei Provincial Engineering Technology Research Center of Agricultural and Sideline Resources, Chemical Engineering and Utilization, School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

Mn/TiO2 catalysts with varying solid contents were innovatively prepared by the sol–gel method and were used for selective catalytic reduction of NO at low temperatures using NH3 (NH3-SCR) as the reducing agent. Surprisingly, it was found that as the solid content of the sol increased, the catalytic activity of the developed Mn/TiO2 catalyst gradually increased, showing excellent catalytic performance. Notably, the Mn/TiO2 (50%) catalyst demonstrates outstanding denitration performance, achieving a 96% NO conversion rate at 100 °C under a volume hourly space velocity (VHSV) of 24,000 h−1, while maintaining high N2 selectivity and stability. It was discovered that as the solid content increased, the catalyst’s specific surface area (SSA), surface Mn4+ concentration, chemisorbed oxygen, chemisorption of NH3, and catalytic reducibility all improved, thereby enhancing the catalytic efficiency of NH3-SCR in degrading NO. Moreover, NH3 at the Lewis acidic sites and NH4+ at the Bronsted acidic sites of the catalyst were capable of reacting with NO. Conversely, NO and NO2 adsorbed on the catalyst, along with bidentate and monodentate nitrates, were unable to react with NH3 at low temperatures. Consequently, the developed catalyst’s low-temperature catalytic reaction mechanism aligns with the E-R mechanism.

Funder

Key Project of the Scientific Research Program of the Hubei Provincial Department of Education

Hubei Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3