Abstract
In this study, a technology for obtaining functional inorganic-organic hybrid materials was designed using waste polymers of natural origin, i.e., kraft lignin and magnesium lignosulfonate, and alumina as an inorganic component. Al2O3-lignin and Al2O3-lignosulfonate systems were prepared by a mechanical method using a mortar grinder and a planetary ball mill, which made it possible to obtain products of adequate homogeneity in an efficient manner. This was confirmed by the use of Fourier transform infrared spectroscopy and thermogravimetric analysis. In the next step, the developed hybrid materials were used as functional admixtures in cement mixtures, thus contributing to the formation of a modern, sustainable building material. How the original components and hybrid materials affected the mechanical properties of the resulting mortars was investigated. The admixture of biopolymers, especially lignin, led to cement composites characterized by greater plasticity, while alumina improved their strength properties. It was confirmed that the system containing 0.5 wt.% of alumina-lignin material is the most suitable for application as a cement mortar admixture.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献