Abstract
The non-linear equation of the radial oscillations of a liquid ball in an immiscible liquid under the exposure of time-varying sound pressure was obtained. The behavioral features of a liquid spherical drop placed in such a media were analyzed in the presence of ultrasound irradiations. The slowing-down effect of the extracted metal ions under its exposure has been studied for the first time, using theoretical and experimental approaches. This phenomenon mechanism was revealed, and analytical equations for the mass transfer rate as a function of the sound pressure oscillations amplitude and the substrate ultrasonic treatment time are presented. Experimental studies of Fe3+ ions extracted from chloride and nitrate solutions in systems based on water-soluble polymers were carried out, and a convincing coincidence with the results of theoretical calculations was established. The conditions for achieving the desired extraction efficiency when applying the ultrasonic stimulating effect are specified. The derived result opens the complementary possibility in operations, with the separateness of extraction processes, that which has the essential practical importance.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献