Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications

Author:

Pompilio Michele,Ierides Ioannis,Cacialli Franco

Abstract

There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles’ cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs.

Funder

European Commission

EPSRC and SFI Centre for Doctoral Training in Advanced Characterisation of Materials Grant

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3