Effects of Fatty Alcohols with Different Chain Lengths on the Performance of Low pH Biomass-Based Foams for Radioactive Decontamination

Author:

Zhang Hao,Liang Lili,Xi Hailing,Liu Datong,Li Zhanguo,Lin Xiaoyan

Abstract

Compared with polymers and nanoparticles, fatty alcohols can not only increase the stability of foam, but also maintain better foamability at pH < 2, which is beneficial to reduce waste liquid and increase decontamination efficiency for radioactive surface pollution. However, different fatty alcohols have different hydrophobic chain lengths. The effects of fatty alcohols with different chain lengths on the performance of decontamination foam were studied at pH < 2, to assist in the selection of suitable fatty alcohols as foam stabilizers. Combined with betaine surfactant and phytic acid, biomass-based foams were synthesized using fatty alcohols with different chain lengths. When the hydrophobic tail groups of the fatty alcohol and the surfactant were the same, the foam showed the best performance, including the lowest surface tension, the highest liquid film strength, the greatest sag-resistance and the best stability. However, when the hydrophobic tail groups were different, the space between adjacent surface active molecules was increased by thermal motion of the excess terminal tail segments (a tail-wagging effect), and the adsorption density reduced on the gas-liquid interface, leading to increased surface tension and decreased liquid film strength, sag-resistance and stability. The use of decontamination foam stabilized by fatty alcohols with the same hydrophobic group as the surfactant was found to increase the decontamination rate of radioactive uranium pollution from 64 to over 90% on a vertical surface.

Funder

State Key Laboratory of NBC Protection for Civilian

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3