Affiliation:
1. School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China
2. College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
Abstract
Cobalt complexes have previously been reported to exhibit high faradaic efficiency in reducing CO2 to CO. Herein, we synthesized capsule-like cobalt–polypyridine diamine complexes [Co(L1)](BF4)2 (1) and [Co(L2) (CH3CN)](BF4)2 (2) as catalysts for the electrocatalytic reduction of CO2. Under catalytic conditions, complexes 1 and 2 demonstrated the electrocatalytic reduction of CO2 to CO in the presence or absence of CH3OH as a proton source. Experimental and computational studies revealed that complexes 1 and 2 undergo two consecutive reversible one-electron reductions on the cobalt core, followed by the addition of CO2 to form a metallocarboxylate intermediate [CoII(L)–CO22−]0. This crucial reaction intermediate, which governs the catalytic cycle, was successfully detected using high resolution mass spectrometry (HRMS). In situ Fourier-transform infrared spectrometer (FTIR) analysis showed that methanol can enhance the rate of carbon–oxygen bond cleavage of the metallocarboxylate intermediate. DFT studies on [CoII(L)–CO22−]0 have suggested that the doubly reduced species attacks CO2 on the C atom through the dz2 orbital, while the interaction with CO2 is further stabilized by the π interaction between the metal dxz or dxz orbital with p orbitals on the O atoms. Further reductions generate a metal carbonyl intermediate [CoI(L)–CO]+, which ultimately releases CO.
Funder
Youth Innovative Talents Projects in Colleges and Universities in Guangdong Province
Guangdong Basic and Applied Basic Research Foundation
National Natural Science Foundation of China
Natural Science Foundation of Top Talent of SZTU
Key Projects of the Guangdong Education Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献