Optimization of Mulberry Extract Foam-Mat Drying Process Parameters

Author:

Thuy Nguyen MinhORCID,Tien Vo Quoc,Tuyen Nguyen Ngoc,Giau Tran Ngoc,Minh Vo QuangORCID,Tai Ngo VanORCID

Abstract

Mulberry powder was created from the extract using a foam-mat drying process. The studies aimed to evaluate the effects of egg albumin, carboxymethyl cellulose (CMC), digestion-resistant maltodextrin (DRM) contents, and whipping time (5 to 15 min) on the foam properties. The impact of different drying temperatures (60 to 75 °C) on the quality of the finished mulberry powder was also noted. The best foam expansion/stability value was determined using multiple regression models as a function of egg albumin, CMC, DRM, and whipping time. The results indicated that the main influencing factors for the foam properties were whipping time followed by egg albumin, CMC, and DRM. Optimum values of foam expansion and stability were achieved at 467.9% and 97.02%, respectively. The foam had a porous structure and good stability for subsequent drying, with optimal contents of egg albumin, CMC, and DRM used at 7.6%, 0.4%, and 2%, respectively, along with a whipping time of 14.5 min. The established models had a high coefficient of determination (R2 > 0.9) and a high correlation between the predicted and observed values. Therefore, the model could be adjusted to determine the characteristics of the foam suitable for subsequent drying. The optimal values were then also verified. Minimal fluctuations (1.78–2.98%) between the experimental data and the optimal value were found. The drying temperature also significantly affected the quality of the mulberry powder. The foam was dried at 65 °C for 4 h to produce apowder with a beautiful light color (L* = 62.65), a characteristic purple-red color of mulberry (a* = 5.97). The moisture, water activity, and anthocyanin content of the finished mulberry powder were 4.57%, 0.3, and 5.4 mg/g, respectively.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference54 articles.

1. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits;Singhal;J. Fruit Ornam. Plant Res.,2010

2. Sanchez, M.D. (2002). Mulberry for Animal Production: Proceedings of an Electronic Conference Carried Out between May and August 2000, Food & Agriculture Organization.

3. First report of mulberry root rot caused by Lasiodiplodia theobromae in China;Xie;Plant Dis.,2014

4. Characteristics of mulberry fruit and wine with varieties;Kim;Appl. Biol. Chem.,2006

5. Quantification and purification of mulberry anthocyanins with macroporous resins;Liu;J. Biomed. Biotechnol.,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3