Semi-Embedding Zn-Co3O4 Derived from Hybrid ZIFs into Wood-Derived Carbon for High-Performance Supercapacitors

Author:

Xiong Wanning,Ouyang Jie,Wang Xiaoman,Hua Ziheng,Zhao Linlin,Li Mengyao,Lu Yuxin,Yin Wei,Liu Gonggang,Zhou Cui,Luo YongfengORCID,Xu BinghuiORCID

Abstract

Transition metal oxides (TMOs) can provide high theoretical capacitance due to the change of multiple valence states of transition metals. However, their intrinsic drawbacks, including poor electrical conductivity, lower energy density, and huge volume expansion, will result in the pulverization of electrode materials and restricted electrochemical kinetics, thus leading to poor rate capability and rapid capacity fading. Composite electrodes based on transition metal oxides and carbon-based materials are considered to be promising candidates for overcoming these limitations. Herein, we reported a preparation method of hybrid ZIFs derived Zn-doped Co3O4/carbon (Zn-Co3O4/C-230) particles semi-embedded in wood-derived carbon skeleton for integrated electrodes. A large specific surface area, excellent conductivity, and electrochemical stability provide a larger electrochemical activity and potential window for the electrode. Prepared Zn-Co3O4@CW-230 electrode (0.6 mm thick) displays ultrahigh area specific capacitances of 7.83 and 6.46 F cm−2 at the current densities of 5 and 30 mA cm−2, respectively. Moreover, a symmetric supercapacitor assembled by two identical Zn-Co3O4@CW-230 electrodes delivers a superior area-specific capacitance of 2.61 F cm−2 at the current densities of 5 mA cm−2 and great energy densities of 0.36 mWh cm−2 (6.0 mWh cm−3) at 2.5 mW cm−2, while maintaining 97.3% of initial capacitance over 10,000 cycles. It notably outperforms those of most carbon-based metal oxides, endowing the Zn-Co3O4@CW-230 with extensive prospects for practical application.

Funder

Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3