Spherical Binderless 4A/5A Zeolite Assemblies: Synthesis, Characterization, and Adsorbent Applications

Author:

Li Tong1,Wang Shuangwei2,Gao Jinqiang1,Wang Ruiqiang2,Gao Guifeng2,Ren Guangming2,Na Shengnan3,Hong Mei1ORCID,Yang Shihe1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School (PKUSZ), Shenzhen 518055, China

2. Ambulanc (Shenzhen) Tech. Co., Ltd., Shenzhen 518108, China

3. College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China

Abstract

Zeolite microspheres have been successfully applied in commercial-scale separators such as oxygen concentrators. However, further enhancement of their applications is hampered by the post-synthetic shaping process that formulates the zeolite powder into packing-sized spherical bodies with various binders leading to active site blockage and suboptimal performance. Herein, binderless zeolite microspheres with a tunable broad size range from 2 µm to 500 µm have been developed with high crystallinity, sphericity over 92%, monodispersity with a coefficient of variation (CV) less than 5%, and hierarchical pore architecture. Combining precursor impregnation and steam-assisted crystallization (SAC), mesoporous silica microspheres with a wide size range could be successfully transformed into zeolite. For preserved size and spherical morphology, a judicious selection of the synthesis conditions is crucial to ensure a pure phase, high crystallinity, and hierarchical architecture. For the sub-2-µm zeolite microsphere, low-temperature prolonged aging was important so as to suppress external zeolization that led to a large, single macroporous crystal. For the large 500 µm sphere, ultrasound pretreatment and vacuum impregnation were crucial and facilitated spatially uniform gel matrix dispersion and homogenous crystallization. The obtained zeolite 5A microspheres exhibited excellent air separation performance, while the 4A microspheres displayed ammonium removal capabilities. This work provides a general strategy to overcome the existing limitations in fabricating binder-free technical bodies of zeolites for various applications.

Funder

Guangdong Science and Technology Program

Shenzhen Science and Technology Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3