Abstract
The study deals with the primary species, ejected electrons, and guanine radicals, leading to oxidative damage, that is generated in four-stranded DNA structures (guanine quadruplexes) following photo-ionization by low-energy UV radiation. Performed by nanosecond transient absorption spectroscopy with 266 nm excitation, it focusses on quadruplexes formed by folding of GGG(TTAGGG)3 single strands in the presence of K+ ions, TEL21/K+. The quantum yield for one-photon ionization (9.4 × 10−3) was found to be twice as high as that reported previously for TEL21/Na+. The overall population of guanine radicals decayed faster, their half times being, respectively, 1.4 and 6.7 ms. Deprotonation of radical cations extended over four orders of magnitude of time; the faster step, concerning 40% of their population, was completed within 500 ns. A reaction intermediate, issued from radicals, whose absorption spectrum peaked around 390 nm, was detected.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献