Differential Precipitation of Mg(OH)2 from CaSO4·2H2O Using Citrate as Inhibitor—A Promising Concept for Reagent Recovery from MgSO4 Waste Streams

Author:

Ziegenheim Szilveszter,Szabados Márton,Kónya ZoltánORCID,Kukovecz Ákos,Pálinkó IstvánORCID,Sipos Pál

Abstract

In hydrometallurgical processing and acidic wastewater treatment, one of the neutralizing agents employed is MgO or Mg(OH)2. At the end of this process, the resulting solution, which is rich in SO42− and Mg2+ is treated with lime to remove (or minimize the amount) of these ions via the precipitation of Mg(OH)2 and CaSO4·2H2O (gypsum). In our work, an attempt was made to separate the two solids by increasing the induction time of the gypsum precipitation, thus regenerating relatively pure Mg(OH)2 which could be reused in wastewater treatments or hydrometallurgical processing circuits, and in this way, significantly enhancing the economic viability of the process. During our experiments, the reaction of an MgSO4 solution with milk of lime prepared from quicklime was studied. The effects of a range of organic additives, which can slow down the precipitation of gypsum have been assessed. The process was optimized for the most promising inhibiting agent—that is, the citrate ion. The reactions were continuously monitored in situ by conductometric measurements with parallel monitoring of solution pH and temperature. ICP-OES measurements were also carried out on samples taken from the reaction slurry. The composition of the precipitating solids at different reaction times was established by powder XRD and their morphology by SEM. Finally, experiments were carried out to locate the additive after the completion of the precipitation reaction to get information about its potential reuse.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3