Affiliation:
1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
Abstract
Fully room temperature three-dimensional (3D) shape-reprogrammable, recyclable, and photomobile azobenzene (azo) polymer actuators hold much promise in many photoactuating applications, but their development is challenging. Herein, we report on the efficient synthesis of a series of main-chain azo liquid crystalline polymers (LCPs) with such performances via Michael addition polymerization. They have both ester groups and two kinds of hydrogen bond-forming groups (i.e., amide and secondary amino groups) and different flexible spacer length in the backbones. Such poly(ester-amide-secondary amine)s (PEAsAs) show low glass transition temperatures (Tg ≤ 18.4 °C), highly ordered smectic liquid crystalline phases, and reversible photoresponsivity. Their uniaxially oriented fibers fabricated via the melt spinning method exhibit good mechanical strength and photoinduced reversible bending/unbending and large stress at room temperature, which are largely influenced by the flexible spacer length of the polymers. Importantly, all these fibers can be easily reprogrammed under strain at 25 °C into stable fiber springs capable of showing a totally different photomobile mode (i.e., unwinding/winding), mainly owing to the presence of low Tg and both dynamic hydrogen bonding and stable crystalline domains (induced by the uniaxial drawing during the fiber formation). They can also be recycled from a solution at 25 °C. This work not only presents the first azo LCPs with 3D shape reprogrammability, recyclability, and photomobility at room temperature, but also provides some important knowledge of their structure–property relationship, which is useful for designing more advanced photodeformable azo polymers.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献