Efficacy of Agricultural Residue-Derived Biochar for Tackling Cadmium Contamination in an Aqueous Solution

Author:

Liu Qinghai12ORCID,Song Zhengguo3,Li Jingwen3,Pan Chongshuang12,Qiu Weiwen4ORCID

Affiliation:

1. Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China

2. Agricultural and Livestock Products Engineering Technology Research Center of Tibet Autonomous Region, Lhasa 850032, China

3. Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China

4. The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand

Abstract

This study aimed to investigate the efficacy of biochar, produced from different agricultural residues varying in lignin and cellulose content and subjected to different pyrolysis temperatures, in removing cadmium ions (Cd (II)) from an aqueous solution. This removal process is crucial for protecting human health and the environment. Specifically, the study focused on the adsorption behaviors of Cd (II) by the biochars made from rice husk biochar (RHB), maize straw biochar (MSB), peanut shell biochar (PSB), cottonseed shell biochar (CHB), and mulberry leaf biochar (MLB), which were prepared at 300 °C and 600 °C. The results indicated that the type of agricultural residue used to produce biochar significantly influenced the adsorption of Cd (II). Notably, mulberry leaf biochar prepared at 300 °C (MLB-300) demonstrated the highest adsorption efficiency, achieving a maximum adsorption capacity of 42.2 mg g−1. Batch adsorption experiments assessed the impact of various factors, including system pH, NO3− concentration, and adsorption duration. The adsorption kinetics were better described by the pseudo-second-order model than the pseudo-first-order model. Moreover, the study found that the lignin content of the biochar plays a major role in determining the adsorption capacity. The surface characteristics of biochar, influenced by the types of agricultural residues and preparation temperature, directly impact its adsorption mechanism and capacity. While biochar produced at 300 °C showed optimal Cd(II) adsorption, those processed at 600 °C were less effective, likely due to the loss of functional groups at higher temperatures.

Funder

Key scientific and technological research topics of Xizang

STU Scientific Research Foundation for Talents

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3