Developing an Intelligent Data Analysis Approach for Marine Sediments

Author:

Nedyalkova MiroslavaORCID,Simeonov VasilORCID

Abstract

(1) Background: As the chemical and physicochemical properties of marine sediments are closely related to natural and anthropogenic events, it is a real challenge to use their specific assessment as an indicator of environmental pollution discharges. (2) Methods: It is addressed in this study that collection with intelligent data analysis methods, such as cluster analysis, principal component analysis, and source apportionment modeling, are applied for the assessment of the quality of marine sediment and for the identification of the contribution of pollution sources to the formation of the total concentration of polluting species. A study of sediment samples was carried out on 174 samples from three different areas along the coast of the Varna Gulf, Bulgaria. This was performed to determine the effects of pollution. As chemical descriptors, 34 indicators (toxic metals, polyaromatic hydrocarbons, polychlorinated biphenyls, nutrient components, humidity, and ignition loss) were used. The major goal of the present study was to assess the sediment quality in three different areas along the Gulf of Varna, Bulgaria by the source apportionment method. (3) Results: There is a general pattern for identifying three types of pollution sources in each area of the coastline with varying degrees of variation between zone A (industrially impacted zones), zone B (recreational areas), and zone C (anthropogenic and industrial wastes). (4) Conclusions: The quantitative apportionment procedure made it possible to determine the contribution of each identified pollution source for each zone in forming the total pollutant concentrations.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3