Abstract
The focus of this work was on developing a green, low-cost, and efficient biosorbent based on the biological structure and properties of MT and applying it to the remediation of cationic dyes in dye wastewater. The adsorption performance and mechanism of MT on methylene blue (MB) and crystal violet (CV) were investigated by batch adsorption experiments. The results demonstrated that the highest adsorption values of MT for MB (411 mg/g) and CV (553 mg/g) were greatly higher than the reported values of other biosorbents. In addition, the adsorption behaviors of methylene blue (MB) and crystal violet (CV) by MT were spontaneous exothermic reactions and closely followed the pseudo-second-order (PSO) kinetics and Langmuir isotherm. Further, the depleted MT was regenerated using pyrolysis mode to convert depleted MT into MT-biochar (MBC). The maximum adsorption of Cu2+ and Pb2+ by MBC was up to 320 mg/g and 840 mg/g, respectively. In conclusion, this work presented a new option for the adsorption of cationic dyes in wastewater and a new perspective for the treatment of depleted biosorbents.
Funder
Natural Science Foundation of Anhui Province
Anhui Provincial Training Program of Innovation and Entrepreneurship for Undergraduates
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献