Effect of Chemical Composition of Metal–Organic Crosslinker on the Properties of Fracturing Fluid in High-Temperature Reservoir

Author:

Shi Shenglong1ORCID,Sun Jinsheng23,Mu Shanbo4,Lv Kaihe2,Liu Jingping2,Bai Yingrui2ORCID,Wang Jintang2,Huang Xianbin2ORCID,Jin Jiafeng2ORCID,Li Jian2ORCID

Affiliation:

1. College of Science, Qingdao University of Technology, Qingdao 266520, China

2. Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China

4. Shandong Three Carbon Technology Development Co., Ltd., Dongying 257100, China

Abstract

To investigate the effect of the chemical composition of a metal–organic crosslinker on the performances of fracturing fluid in high-temperature conditions, four zirconium (Zr) crosslinkers and one aluminum–zirconium (Al-Zr) crosslinker with a polyacrylamide were used. The crosslinkers possessed the same Zr concentration, but they differed in component amounts and the order of the addition of the crosslinker components, leading to different chemical compositions in the crosslinkers. The fracturing fluids prepared by different tested crosslinkers were compared in terms of properties of rheological behavior, sand-carrying ability, microstructure, and gel breaking characteristics. The results showed that the fracturing fluids prepared by zirconium lactic acid, ethanediamine, and sorbitol crosslinkers offered the slowest viscosity development and highest final viscosity compared to the zirconium lactic acid crosslinker and the zirconium lactic acid and ethanediamine crosslinker. The zirconium sorbitol, lactic acid, and ethanediamine crosslinker exhibited a faster crosslinking rate and a higher final viscosity than the zirconium lactic acid, ethanediamine, and sorbitol crosslinker; the crosslinker showed crosslinking density and crosslinking reactivity, resulting in more crosslinking sites and a higher strength in the fracturing fluid. The Al-Zr-based crosslinker possessed better properties in temperature and shear resistance, viscoelasticity, shear recovery, and sand-carrying ability than the Zr-based crosslinker due to the synergistic crosslinking effect of aluminum and zirconium ions. The tertiary release gelation mechanism of the Al-Zr-based fracturing fluid achieved a temperature resistance performance in the form of continuous crosslinking, avoiding the excessive crosslinking dehydration and reducing viscosity loss caused by early shear damage. These results indicated that the chemical compositions of metal–organic crosslinkers were important factors in determining the properties of fracturing fluids. Therefore, the appropriate type of crosslinker could save costs without adding the additional components required for high-temperature reservoirs.

Funder

Major Project of the Natural Science Foundation of China

Key Research and Development Program of Shandong

Major Scientific and Technological Projects of CNPC

Qingdao Postdoctoral Applied Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3