Polymer Dynamics in Glycerol–Water Mixtures

Author:

Stepišnik Janez1ORCID

Affiliation:

1. Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

Velocity correlation spectra (VAS) in binary mixtures of water and glycerol (G/W), obtained by measurements using the modulated gradient spin echo (MGSE) NMR method, were explained by the interactions of water molecules with clusters formed around the hydrophilic glycerol molecule, which drastically change the molecular dynamics and rheology of the mixture. It indicates a thickening of the shear viscosity, which could affect the dynamics of submerged macromolecules. The calculation of the polymer dynamics with the Langevin equations according to the Rouse model, where the friction was replaced by the memory function of the retarded friction, gave the dependence of the dynamics of the polymer on the rate of shear viscous properties of the solvent. The obtained formula was used to calculate the segmental VAS of the polymer when immersed in pure water and in a G/W mixture with 33 vol% glycerol content, taking into account the inverse proportionality between the solvent VAS and friction. The spectrum shows that in the G/W mixture, the fast movements of the polymer segments are strongly inhibited, which creates the conditions for slow processes caused by the internal interaction between the polymer segments, such as interactions that cause disordered polypeptides to spontaneously fold into biologically active protein molecules when immersed in such a solvent.

Funder

Slovenian research agency, ARRS

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3