Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production

Author:

Liu Jian12,Zhang Shengling3,Long Xinshu4,Jin Xiaomin4,Zhu Yangying4,Duan Shengxia45,Zhao Jinsheng3ORCID

Affiliation:

1. College of Agriculture and Bioengineering, Heze University, Heze 274000, China

2. Institute of Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China

3. Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China

4. Department of Chemistry and Engineering, Heze University, Heze 274500, China

5. CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

Abstract

Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and thiophene as building blocks. Based on UV diffuse reflection spectra, the photonic band gaps of PhIN-CPP and ThIN-CPP were calculated as 2.05 eV and 1.79 eV. The PhIN-CPP exhibited a high hydrogen evolution rate (HER) of 5359.92 μmol·g−1·h−1, which is 10 times higher than that of Thin-CPP (538.49 μmol·g−1·h−1). The remarkable disparity in the photocatalytic performance can be primarily ascribed to alterations in the band structure of the polymers, which includes its more stable benzene units, fluffier structure, larger specific surface area, most pronounced absorption occurring in the visible region and highly extended conjugation with a high density of electrons. The ΔEST values for PhIN-CPP and ThIN-CPP were calculated as 0.79 eV and 0.80 eV, respectively, based on DFT and TD-DFT calculations, which revealed that the incorporation of triazine units in the as-prepared CMPs could enhance the charge transfer via S1 ↔ T1 and was beneficial to the photocatalytic decomposition of H2O. This study presents a novel concept for developing a hybrid system for preparation of H2 by photocatalysis with effectiveness, sustainability, and economy.

Funder

National Natural Science Foundation of China

Natural Foundation of Shandong Province

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3