Asymmetrical Diketopyrrolopyrrole Derivatives with Improved Solubility and Balanced Charge Transport Properties

Author:

Carella Antonio1,Landi Alessandro2ORCID,Bonomo Matteo34ORCID,Chiarella Fabio5ORCID,Centore Roberto1,Peluso Andrea2,Nejrotti Stefano34ORCID,Barra Mario5ORCID

Affiliation:

1. Dipartimento di Scienze Chimiche, Università degli Studi di Napoli ‘Federico II’, Complesso Universitario Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy

2. Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy

3. Department of Chemistry, University of Torino, Via Pietro Giuria 7, 10125 Torino, Italy

4. Nanomaterials for Industry and Sustainability (NIS) Interdepartmental Centre, Via G. Quarello 15A, 10135 Torino, Italy

5. CNR-Institute for Superconductors, Innovative Materials, and Devices, Dipartimento di Fisica “Ettore Pancini”, P. le Tecchio, 80, 80125 Napoli, Italy

Abstract

The diketopyrrolopyrrole (DPP) unit represents one of the building blocks more widely employed in the field of organic electronics; in most of the reported DPP-based small molecules, this unit represents the electron acceptor core symmetrically coupled to donor moieties, and the solubility is guaranteed by functionalizing lactamic nitrogens with long and branched alkyl tails. In this paper, we explored the possibility of modulating the solubility by realizing asymmetric DPP derivatives, where the molecular structure is extended in just one direction. Four novel derivatives have been prepared, characterized by a common dithyenil-DPP fragment and functionalized on one side by a thiophene unit linked to different auxiliary electron acceptor groups. As compared to previously reported symmetric analogs, the novel dyes showed an increased solubility in chloroform and proved to be soluble in THF as well. The novel dyes underwent a thorough optical and electrochemical characterization. Electronic properties were studied at the DFT levels. All the dyes were used as active layers in organic field effect transistors, showing balanced charge transport properties.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3