Author:
He Wei,Huang Xiaodong,Zhang Jun,Zhu Yue,Liu Yajun,Liu Bo,Wang Qilong,Huang Xiaonan,He Da
Abstract
Excessive bleeding induces a high risk of death and is a leading cause of deaths that result from traffic accidents and military conflict. In this paper, we developed a novel porous chitosan–CaCO3 (CS–CaCO3) composite material and investigated its hemostatic properties and wound healing performance. The CS–CaCO3 composites material was prepared via a wet-granulation method. Granulation increases the infiltrating ability of the CS–CaCO3 composites material. The improved water absorption ability was enhanced to 460% for the CS–CaCO3 composites material compared to the CaCO3 or chitosan with only one single component. The coagulation studies in vivo illustrated that the blood clotting time was greatly reduced from 31 s for CaCO3 to 16 s for the CS–CaCO3 composite material. According to the results of the wound healing experiments in rats, it was found that the CS–CaCO3 composite material can promote wound healing. The CS–CaCO3 composite material could accelerate wound healing to a rate of 9 days, compared with 12 days for the CaCO3. The hemostatic activity, biocompatibility, and low cost of CS–CaCO3 composite material make it a potential agent for effective hemostatic and wound healing materials.
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献