Abstract
Siloxane-based elastomers are some of the most sought-after materials for the construction of actuators and equipment for energy harvesting devices. This article focuses on changes of the mechanical (breaking stress, breaking strain, Young’s modulus) and dielectric properties for elastomers prepared with silicones, induced by the variation of molecular weight of the matrix, with three different silicone polymers having 60,000 g/mol, 150,000 g/mol, and 450,000 g/mol (from GPC measurements). Multiple siloxane elastomers were crosslinked with methyltriacetoxysilane using the sol-gel route. The dielectric permittivity values of the elastomers were also enhanced with two different complex structures containing siloxane bond and 3d transition metals as filler materials for polydimethylsiloxane polymers with various molecular weights. The dielectric spectroscopy tests demonstrated a small decrease (5%) for the values of the dielectric permittivity in relation to increased molecular weight of the siloxane polymer, both for samples prepared with pure polymer and for samples with metal complexes. The samples of nanocomposites showed a >50% increase of dielectric permittivity values relative to samples prepared of pure siloxane elastomer. The thermal tests demonstrated that the nanocomposites retained thermal stability similar with samples prepared of pure siloxane elastomer. The behavior under controlled conditions of humidity showed a trend of increased water vapor sorption with increasing molecular weight but an overall hydrophobic stable character of nanocomposites.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献