Early-Stage Dissolution Kinetics of Silicate-Based Bioactive Glass under Dynamic Conditions: Critical Evaluation

Author:

Galusková DagmarORCID,Kaňková Hana,Švančárková Anna,Galusek DušanORCID

Abstract

This manuscript presents a systematic and detailed study of ion release from 45S5 bioactive glass to develop a methodology to directly monitor dissolved ions in a simulated fluid via inductively coupled plasma optical emission spectrometry (ICP OES). For the kinetic study, two dynamic tests, an inline ICP test and a flow-through test, are performed with the same flow rate, temperature, pH, ionic strength of the solution, and sample surface to leaching solution volume ratio. The flow-through test allows for the measurement of an initial dissolution rate, as well the maximum amount of any species released from the surface of the glass. In addition, the data from the inline ICP test are obtained by immediate and direct monitoring of ions from the first minutes of contact of the glass with aqueous fluids with pH values of 4 and 7.4. The overall dissolution rates of the tested commercial bioactive glass in simulated body fluid (SBF) (pH 7.4) were significantly lower compared to the initial rate acquired. The methodology developed in this study can be applied to monitor the controlled release of ions with additional therapeutic functionalities, where the amount of ions released in the first minutes can be critical for the resulting biological performance.

Funder

Horizon 2020 Framework Programme

VEGA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3