Performance Analysis of Radial Basis Function Metamodels for Predictive Modelling of Laminated Composites

Author:

Kalita KanakORCID,Chakraborty Shankar,Madhu S,Ramachandran ManickamORCID,Gao Xiao-ZhiORCID

Abstract

High-fidelity structural analysis using numerical techniques, such as finite element method (FEM), has become an essential step in design of laminated composite structures. Despite its high accuracy, the computational intensiveness of FEM is its serious drawback. Once trained properly, the metamodels developed with even a small training set of FEM data can be employed to replace the original FEM model. In this paper, an attempt is put forward to investigate the utility of radial basis function (RBF) metamodels in the predictive modelling of laminated composites. The effectiveness of various RBF basis functions is assessed. The role of problem dimensionality on the RBF metamodels is studied while considering a low-dimensional (2-variable) and a high-dimensional (16-variable) problem. The effect of uniformity of training sample points on the performance of RBF metamodels is also explored while considering three different sampling methods, i.e., random sampling, Latin hypercube sampling and Hammersley sampling. It is observed that relying only on the performance metrics, such as cross-validation error that essentially reuses training samples to assess the performance of the metamodels, may lead to ill-informed decisions. The performance of metamodels should also be assessed based on independent test data. It is further revealed that uniformity in training samples would lead towards better trained metamodels.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3