Predictive Maintenance of Norwegian Road Network Using Deep Learning Models

Author:

Hassan Muhammad Umair1ORCID,Steinnes Ole-Martin Hagen1,Gustafsson Eirik Gribbestad1,Løken Sivert1,Hameed Ibrahim A.1ORCID

Affiliation:

1. Department of ICT and Natural Sciences, Norwegian University of Science and Technology (NTNU), 6009 Ålesund, Norway

Abstract

Industry 4.0 has revolutionized the use of physical and digital systems while playing a vital role in the digitalization of maintenance plans for physical assets in an optimal way. Road network conditions and timely maintenance plans are essential in the predictive maintenance (PdM) of a road. We developed a PdM-based approach that uses pre-trained deep learning models to recognize and detect the road crack types effectively and efficiently. We, in this work, explore the use of deep neural networks to classify roads based on the amount of deterioration. This is done by training the network to identify various types of cracks, corrugation, upheaval, potholes, and other types of road damage. Based on the amount and severity of the damage, we can determine the degradation percentage and have a PdM framework where we can identify the intensity of damage occurrence and, thus, prioritize the maintenance decisions. The inspection authorities and stakeholders can make maintenance decisions for certain types of damages using our deep learning-based road predictive maintenance framework. We evaluated our approach using precision, recall, F1-score, intersection-over-union, structural similarity index, and mean average precision measures, and found that our proposed framework achieved significant performance.

Funder

Norwegian University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-based Road Inspection Framework Using Drones with GPS-less Navigation;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

2. Novel Attention-Based Framework for Person Re-identification in Video Surveillance;Lecture Notes in Electrical Engineering;2024

3. Research on the Application of Machine Learning in Predictive Maintenance of Building Structures;Learning and Analytics in Intelligent Systems;2024

4. Centrality for Modeling Greedy Algorithms of Road Maintenance;2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2023-11-08

5. Deep learning and IoT enabled digital twin framework for monitoring open-pit coal mines;Frontiers in Energy Research;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3