Identification and Characterization of the Very-Low-Density Lipoprotein Receptor Gene from Branchiostoma belcheri: Insights into the Origin and Evolution of the Low-Density Lipoprotein Receptor Gene Family

Author:

Cao Yunpeng12,Wang Haili2,Jin Ping2,Ma Fei2,Zhou Xue1

Affiliation:

1. School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou 225300, China

2. Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China

Abstract

Low-density lipoprotein receptors (LDLRs) are a class of cell-surface endocytosis receptors that are mainly involved in cholesterol homeostasis and cellular signal transduction. Very-low-density lipoprotein receptors (VLDLRs), which are members of the LDLR family, have been regarded as multi-function receptors that fulfill diverse physiological functions. However, no VLDLR gene has been identified in protochordates to date. As a representative protochordate species, amphioxi are the best available example of vertebrate ancestors. Identifying and characterizing the VLDLR gene in amphioxi has high importance for exploring the evolutionary process of the LDLR family. With this study, a new amphioxus VLDLR gene (designated AmphiVLDLR) was cloned and characterized using RACE-PCR. The 3217 nt transcript of the AmphiVLDLR had a 2577 nt ORF, and the deduced 858 amino acids were highly conserved within vertebrate VLDLRs according to their primary structure and three-dimensional structure, both of which contained five characteristic domains. In contrast to other vertebrate VLDLRs, which had a conserved genomic structure organization with 19 exons and 18 introns, the AmphiVLDLR had 13 exons and 12 introns. The results of a selective pressure analysis showed that the AmphiVLDLR had numerous positive selection sites. Furthermore, the tissue expression of AmphiVLDLR using RT-qPCR showed that AmphiVLDLR RNA expression levels were highest in the gills and muscles, moderate in the hepatic cecum and gonads, and lowest in the intestines. The results of the evolutionary analysis demonstrated that the AmphiVLDLR gene is a new member of the VLDLR family whose family members have experienced duplications and deletions over the evolutionary process. These results imply that the functions of LDLR family members have also undergone differentiation. In summary, we found a new VLDLR gene homolog (AmphiVLDLR) in amphioxi. Our results provide insight into the function and evolution of the LDLR gene family.

Funder

National Natural Science Foundation of China

Natural Science Foundation from Jiangsu Province

Excellent Doctoral Dissertation Topic Funding Program from Nanjing Normal University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3