Turbostratic Carbon/Graphene Prepared via the Dry Ice in Flames Method and Its Purification Using Different Routes: A Comparative Study

Author:

Cuadros-Lugo Eduardo,Piñon-Espitia Manuel,Martinez-Rodríguez Harby A.,Lardizabal-Gutierrez DanielORCID,Estrada-Guel IvanovichORCID,Herrera-Ramirez Jose M.ORCID,Carreño-Gallardo CalebORCID

Abstract

Although the dry ice method used to synthesize turbostratic carbon/graphene is little known and used, it has significant advantages over others, such as the following: it is low cost, simple, and a large quantity of material can be obtained using some inorganic and highly available acids (which can be reused). Despite the above advantages, the main reason for its incipient development is the resulting presence of magnesium oxide in the final product. In the present work, three different treatments were tested to remove this remnant using some acid chemical leaching processes, including hydrochloric acid, aqua regia, and piranha solution. Based on the experimental evidence, it was determined that using aqua regia and combining the leaching process with mechanical milling was the most efficient way of removing such a remnant, the residue being only 0.9 wt.%. This value is low compared to that obtained with the other acid leaching solutions and purification processes (2.8–29.6 wt.%). A mandatory high-energy mechanical milling stage was necessary during this treatment to expose and dissolve the highly insoluble oxide without secondary chemical reactions on the turbostratic carbon. High-energy mechanical milling is an effective route to exfoliate graphite, which allows the magnesium oxide to be more susceptible to acid treatment. A yield of turbostratic carbon/graphene of 1 wt.% was obtained from the metallic Mg. The obtained surface area was 504.8 m2g−1; this high value resulting from the intense exfoliation can potentiate the use of this material for a wide variety of applications.

Publisher

MDPI AG

Subject

General Materials Science

Reference51 articles.

1. Composite Materials: Science and Applications;Chung,2010

2. A roadmap for graphene

3. Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method

4. A Simple Approach to Stepwise Synthesis of Graphene OxideNanomaterial;Paulchamy;J. Nanomed. Nanotechnol.,2015

5. Obtención de grafeno mediante la reducción química del óxido de grafito;Cruz Silva;Ingenierías,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3