Application of Graphite Electrode Plasma Heating Technology in Continuous Casting

Author:

Wang Yong,Song Jingxin,Cheng Nailiang,Guo Zhenhe,Li Jingshe,Yang Shufeng,Zhao Mengjing,Wang Cun

Abstract

In this study, the industrial, experimental effect of a plasma heating system in the form of graphite electrode in the tundish of double-strand slab caster was evaluated for the first time. The system uses three graphite electrodes, two of which are cathodes and one of which is an anode, to form a conductive loop through molten steel in the tundish. The system is built on an old two-strand slab caster and is installed on the premise that the original ladle tundish equipment remains unchanged. The normal working power of the system is up to 1500 kW, and the heating rate of molten steel in the tundish can reach 1.0 °C/min under conditions of 5 t/min total steel throughput and a tundish capacity of 50 t. After the system was put into operation, the purity of molten steel undergoing heating was investigated. The sample analysis of low carbon steel and ultra-low carbon steel before and after heating showed that the contents of N and O in the steel did not increase, while the size of the oxide inclusions near the heating point increased but showed little change in terms of the overall quantity. This process benefited from the addition of inert gas during the heating process to control the atmosphere in the heating area, which prevents reoxidation. The sample analysis also showed that there is no obvious carbon absorption phenomenon after heating, and the fluctuation in C content is within 0.0001%, which is consistent with the general production results. By using this system, the temperature of molten steel in the steelmaking process can be reduced by 10~15 °C, allowing continuous low superheat casting to be supported, which is helpful for reducing production costs and improving the solidified structure inside the slab. The results of the study show that the plasma heating technology can be applied to the continuous casting of low carbon–nitrogen steel slabs, which shows the benefits of reducing emissions and improving production efficiency.

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. Low superheat casting through control of tundish steel temperature;Liang;Steel Times,1998

2. Tundish Technology for Casting Clean Steel: A Review

3. Experimental and Numerical Study of Hydrodynamic Cavitation of Orifice Plates with Multiple Triangular Holes

4. Effect of Stabilizing Steel Temperature in a Continuous-Caster Tundish by the Plasma Method on the Uniformity of the Mechanical Properties of Plates After Rolling

5. Twin-torch type tundish plasma heater “NS-plasma II” for continuous caster;Kittaka;Nippon Steel Tech. Rep.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3