Multi-Reservoir Water Quality Mapping from Remote Sensing Using Spatial Regression

Author:

Chu Hone-JayORCID,He Yu-ChenORCID,Chusnah Wachidatin Nisa’ul,Jaelani Lalu MuhamadORCID,Chang Chih-HuaORCID

Abstract

Regional water quality mapping is the key practical issue in environmental monitoring. Global regression models transform measured spectral image data to water quality information without the consideration of spatially varying functions. However, it is extremely difficult to find a unified mapping algorithm in multiple reservoirs and lakes. The local model of water quality mapping can estimate water quality parameters effectively in multiple reservoirs using spatial regression. Experiments indicate that both models provide fine water quality mapping in low chlorophyll-a (Chla) concentration water (study area 1; root mean square error, RMSE: 0.435 and 0.413 mg m−3 in the best global and local models), whereas the local model provides better goodness-of-fit between the observed and derived Chla concentrations, especially in high-variance Chla concentration water (study area 2; RMSE: 20.75 and 6.49 mg m−3 in the best global and local models). In-situ water quality samples are collected and correlated with water surface reflectance derived from Sentinel-2 images. The blue-green band ratio and Maximum Chlorophyll Index (MCI)/Fluorescence Line Height (FLH) are feasible for estimating the Chla concentration in these waterbodies. Considering spatially-varying functions, the local model offers a robust approach for estimating the spatial patterns of Chla concentration in multiple reservoirs. The local model of water quality mapping can greatly improve the estimation accuracy in high-variance Chla concentration waters in multiple reservoirs.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3