Errors in Radiology: A Standard Review

Author:

Pesapane Filippo1ORCID,Gnocchi Giulia2,Quarrella Cettina2,Sorce Adriana2,Nicosia Luca1ORCID,Mariano Luciano1,Bozzini Anna Carla1,Marinucci Irene1,Priolo Francesca1,Abbate Francesca1,Carrafiello Gianpaolo23,Cassano Enrico1ORCID

Affiliation:

1. Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy

2. Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy

3. Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy

Abstract

Radiological interpretations, while essential, are not infallible and are best understood as expert opinions formed through the evaluation of available evidence. Acknowledging the inherent possibility of error is crucial, as it frames the discussion on improving diagnostic accuracy and patient care. A comprehensive review of error classifications highlights the complexity of diagnostic errors, drawing on recent frameworks to categorize them into perceptual and cognitive errors, among others. This classification underpins an analysis of specific error types, their prevalence, and implications for clinical practice. Additionally, we address the psychological impact of radiological practice, including the effects of mental health and burnout on diagnostic accuracy. The potential of artificial intelligence (AI) in mitigating errors is discussed, alongside ethical and regulatory considerations in its application. This research contributes to the body of knowledge on radiological errors, offering insights into preventive strategies and the integration of AI to enhance diagnostic practices. It underscores the importance of a nuanced understanding of errors in radiology, aiming to foster improvements in patient care and radiological accuracy.

Publisher

MDPI AG

Reference72 articles.

1. Error in radiology;Fitzgerald;Clin. Radiol.,2001

2. (1984). Longman Dictionary of the English Language, Longman.

3. Errors, discrepancies and underlying bias in radiology with case examples: A pictorial review;Onder;Insights Imaging,2021

4. (2000). Chief Medical Officer Learning from Failure: Evidence and Experience. An Organisation with a Memory, Stationery Office.

5. Human error: Models and management;Reason;BMJ,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3