Automotive IoT Ethernet-Based Communication Technologies Applied in a V2X Context via a Multi-Protocol Gateway

Author:

Ioana Alexandru,Korodi AdrianORCID,Silea Ioan

Abstract

The architectural approach for complex communication systems must adapt quickly and take into consideration the increasing set of requirements for every industrial field. The automotive domain is evolving toward the electrification era, with massive technological transformations being realized on all architectural, hardware, and software levels. The legacy usage of exclusively microcontrollers is altered by adopting microprocessors with extended functionalities, reshaping the development structure. Although new hardware capabilities are available and Ethernet communication protocols can contribute to a new range of use-cases for intra-car or for vehicle-to-X (V2X) communication, the implications of using multiple protocols that cover different types of requirements, in the same architecture, are not fully determined. The importance of establishing clear expectations for intelligent communication systems considering various technological and architectural factors is significant for future improvements. In the current paper, we examine the compatibility and real-time responsiveness capabilities, in a diverse, service-oriented architecture, for the major automotive IoT Ethernet-based communication technologies. The feasibility analysis is materialized in a multi-protocol gateway solution that facilitates data exchange between entities with different technological origins. Scalable Service-Oriented Middleware over IP (SOME/IP) is considered the relevant protocol in the automotive domain, alongside the Data Distribution Service (DDS), which combines automotive and IoT applicability. The enhanced Communication Abstraction Layer (eCAL) middleware is added to the mix as an alternative solution for future communication scenarios. The obtained results confirm the compatibility between the targeted technologies, offering a clear understanding regarding the limits of a complex multi-protocol communication system. The defined service-oriented architecture offers efficient data exchanges in a gateway context, also allowing the exploration of the real-time capabilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3