Using Particle Swarm Optimization with Backpropagation Neural Networks and Analytic Hierarchy Process to Optimize the Power Generation Performance of Enhanced Geothermal System (EGS)

Author:

Zhou Ling12,Yan Peng12,Zhang Yanjun3,Lei Honglei4,Hao Shuren5,Ma Yueqiang6,Sun Shaoyou7

Affiliation:

1. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering, Shandong Jianzhu University, Jinan 250101, China

3. College of Construction Engineering, Jilin University, Changchun 130026, China

4. Engineering Research Institute of Appraisal and Strengthening of Shandong Jianzhu University Co., Ltd., Jinan 250014, China

5. School of Civil & Architecture Engineering, East China University of Technology, Nanchang 330013, China

6. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

7. Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100089, China

Abstract

The optimization of the production scheme for enhanced geothermal systems (EGS) in geothermal fields is crucial for enhancing heat production efficiency and prolonging the lifespan of thermal reservoirs. In this study, the 4100–4300 m granite diorite stratum in the Zhacang geothermal field was taken as the target stratum to establish a numerical model of water-heat coupling of three vertical wells. However, relying solely on numerical simulation for optimization is time-consuming and challenging for the determination of the globally optimal production plan. The present study proposes a comprehensive evaluation method for optimizing the performance of EGS power generation based on the integration of particle swarm optimization with backpropagation neural network (PSO-BPNN) and analytic hierarchy process (AHP). Five different PSO-BPNN models were constructed based on the numerical simulation data to predict different EGS power generation performance indexes, including the production temperature, the injection pressure, the total electricity generation, the electric energy efficiency and the levelized cost of electricity. Based on these PSO-BPNN models, the weights of various thermal development evaluation indexes were calculated by AHP to conduct a comprehensive evaluation of the power generation performance of the three vertical wells EGS. The results show that the PSO-BPNN model has good prediction accuracy for EGS prediction of various performance indicators, with a coefficient of determination (R2) exceeding 0.999. The AHP evaluation of all production schemes reveals that the optimal power generation scheme entails a well spacing of 580 m, water injection rate of 56 kg/s, injection temperature of 38 °C and fracture permeability of 2.0 × 10−10 m2. Over a span of 30 years, this scheme can provide a total power generation capacity amounting to 1775 GWh, with an associated LCOE value of 0.03837 USD/kWh. This not only provides a reference for the development and optimization of geothermal systems in the Zhacang geothermal field but also provides a new idea for the optimization design of other geothermal projects.

Funder

Shandong Natural Science Foundation Youth Fund Project

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3