Magnetoelectric Effect in Amorphous Ferromagnetic FeCoSiB/Langatate Monolithic Heterostructure for Magnetic Field Sensing

Author:

Fetisov L. Y.1ORCID,Dzhaparidze M. V.1,Savelev D. V.1ORCID,Burdin D. A.1,Turutin A. V.2ORCID,Kuts V. V.2ORCID,Milovich F. O.2,Temirov A. A.2,Parkhomenko Y. N.2ORCID,Fetisov Y. K.1ORCID

Affiliation:

1. Research and Educational Center ‘Magnetoelectric Materials and Devices’, MIREA—Russian Technological University, 119454 Moscow, Russia

2. Laboratory of Physics of Oxide Ferroelectrics, National University of Science and Technology MISiS, 119049 Moscow, Russia

Abstract

This paper investigates the possibilities of creating magnetic field sensors using the direct magnetoelectric (ME) effect in a monolithic heterostructure of amorphous ferromagnetic material/langatate. Layers of 1.5 μm-thick FeCoSiB amorphous ferromagnetic material were deposited on the surface of the langatate single crystal using magnetron sputtering. At the resonance frequency of the structure, 107 kHz, the ME coefficient of linear conversion of 76.6 V/(Oe∙cm) was obtained. Furthermore, the nonlinear ME effect of voltage harmonic generation was observed with an increasing excitation magnetic field. The efficiency of generating the second and third harmonics was about 6.3 V/(Oe2∙cm) and 1.8 V/(Oe3∙cm), respectively. A hysteresis dependence of ME voltage on a permanent magnetic field was observed due to the presence of α-Fe iron crystalline phases in the magnetic layer. At the resonance frequency, the monolithic heterostructure had a sensitivity to the AC magnetic field of 4.6 V/Oe, a minimum detectable magnetic field of ~70 pT, and a low level of magnetic noise of 0.36 pT/Hz1/2, which allows it to be used in ME magnetic field sensors.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Ministry of Education and Science of the Russian Federation

State Assignment for basic research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3