Data Science on Industrial Data—Today’s Challenges in Brown Field Applications

Author:

Klaeger TilmanORCID,Gottschall Sebastian,Oehm LukasORCID

Abstract

Much research is done on data analytics and machine learning for data coming from industrial processes. In practical approaches, one finds many pitfalls restraining the application of these modern technologies especially in brownfield applications. With this paper, we want to show state of the art and what to expect when working with stock machines in the field. The paper is a review of literature found to cover challenges for cyber-physical production systems (CPPS) in brownfield applications. This review is combined with our own personal experience and findings gained while setting up such systems in processing and packaging machines as well as in other areas. A major focus in this paper is on data collection, which tends be more cumbersome than most people might expect. In addition, data quality for machine learning applications is a challenge once leaving the laboratory and its academic data sets. Topics here include missing ground truth or the lack of semantic description of the data. A last challenge covered is IT security and passing data through firewalls to allow for the cyber part in CPPS. However, all of these findings show that potentials of data driven production systems are strongly depending on data collection to build proclaimed new automation systems with more flexibility, improved human–machine interaction and better process-stability and thus less waste during manufacturing.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implications from Legacy Device Environments on the Conceptional Design of Machine Learning Models in Manufacturing;Journal of Manufacturing and Materials Processing;2024-01-17

2. Verifying the Applicability of Synthetic Image Generation for Object Detection in Industrial Quality Inspection;2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA);2021-12

3. Context-Based Resilience in Cyber-Physical Production System;Data Science and Engineering;2021-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3