A Comparison of the Mechanism of TOC and COD Degradation in Rhodamine B Wastewater by a Recycling-Flow Two- and Three-dimensional Electro-Reactor System

Author:

Ni Jin,Shi Huimin,Xu Yuansheng,Wang QunhuiORCID

Abstract

Dye wastewater, as a kind of refractory wastewater (with a ratio of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of less than 0.3), still needs advanced treatments in order to reach the discharge standard. In this work, the recycling-flow three-dimensional (3D) electro-reactor system was designed for degrading synthetic rhodamine B (RhB) wastewater as dye wastewater (100 mg/L). After 180 min of degradation, the removal of total organic carbon (TOC) and chemical oxygen demand (COD) of RhB wastewater were both approximately double the corresponding values in the recycling-flow two-dimensional (2D) electro-reactor system. Columnar granular activated carbon (CGAC), as micro-electrodes packed between anodic and cathodic electrodes in the recycling-flow 3D electro-reactor system, generated an obviously characteristic peak of anodic catalytic oxidation, increased the mass transfer rate and electrochemically active surface area (EASA) by 40%, and rapidly produced 1.52 times more hydroxyl radicals (·OH) on the surface of CGAC electrodes, in comparison to the recycling-flow 2D electro-reactor system. Additionally, the recycling-flow 3D electro-reactor system can maintain higher current efficiency (CE) and lower energy consumption (Es).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3