A Review of Architectural and Structural Design Typologies of Multi-Storey Timber Buildings in Europe

Author:

Žegarac Leskovar VesnaORCID,Premrov Miroslav

Abstract

Numerous countries across the globe have witnessed the recent decades’ trend of multi-storey timber buildings on the rise, owing to advances in engineering sciences and timber construction technologies. Despite the growth and numerous advantages of timber construction, the global scale of multi-storey timber construction is still relatively low compared to reinforced concrete and steel construction. One of the reasons for a lower share of high-rise timber buildings lies in the complexity of their design, where the architectural design, the selection of a suitable structural system, and the energy efficiency concept strongly depend on the specific features of the location, particularly climate conditions, wind exposure, and seismic hazard. The aforementioned shows the need for a comprehensive study on existing multi-storey timber buildings, which correspond to the boundary conditions in a certain environment, to determine the suitability of such a construction in view of its adjustment to local contexts. Apart from exposing the problems and advantages of such construction, the current paper provides a brief overview of high-rise timber buildings in Europe. Moreover, it addresses the complexity of the design approach to multi-storey timber buildings in general. The second part of the paper highlights the importance of synthesising the architectural, energy, and structural solutions through a detailed analysis of three selected case studies. The findings of the paper provide an expanded view of knowledge of the design of tall timber buildings, which can significantly contribute to a greater and better exploitation of the potential of timber construction in Europe and elsewhere.

Publisher

MDPI AG

Subject

Forestry

Reference54 articles.

1. Technical Design Guide. Mid-rise Timber Buildings, Class 2, 3 and 5 Buildings. Issued by FWPA https://www.woodsolutions.com.au/articles/mid-rise-timber-buildings-design-guides

2. Environmental impact assessment of building envelope components for low-rise buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3