Understanding Social Behaviour in a Health-Care Facility from Localization Data: A Case Study

Author:

Bellini GloriaORCID,Cipriano MarcoORCID,Comai SaraORCID,De Angeli NicolaORCID,Gargano JacopoORCID,Gianella MatteoORCID,Goi Gianluca,Ingrao Giovanni,Masciadri AndreaORCID,Rossi Gabriele,Salice FabioORCID

Abstract

The most frequent form of dementia is Alzheimer’s Disease (AD), a severe progressive neurological pathology in which the main cognitive functions of an individual are compromised. Recent studies have found that loneliness and living in isolation are likely to cause an acceleration in the cognitive decline associated with AD. Therefore, understanding social behaviours of AD patients is crucial to promote sociability, thus delaying cognitive decline, preserving independence, and providing a good quality of life. In this work, we analyze the localization data of AD patients living in assisted care homes to gather insights about the social dynamics among them. We use localization data collected by a system based on iBeacon technology comprising two components: a network of antennas scattered throughout the facility and a Bluetooth bracelet worn by the patients. We redefine the Relational Index to capture wandering and casual encounters, these being common phenomena among AD patients, and use the notions of Relational and Popularity Indexes to model, visualize and understand the social behaviour of AD patients. We leverage the data analyses to build predictive tools and applications to enhance social activities scheduling and sociability monitoring and promotion, with the ultimate aim of providing patients with a better quality of life. Predictions and visualizations act as a support for caregivers in activity planning to maximize treatment effects and, hence, slow down the progression of Alzheimer’s disease. We present the Community Behaviour Prediction Table (CBPT), a tool to visualize the estimated values of sociability among patients and popularity of places within a facility. Finally, we show the potential of the system by analyzing the Coronavirus Disease 2019 (COVID-19) lockdown time-frame between February and June 2020 in a specific facility. Through the use of the indexes, we evaluate the effects of the pandemic on the behaviour of the residents, observing no particular impact on sociability even though social distancing was put in place.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. World Population Ageing 2019 Highlights

2. Why an Ageing Population Is the Greatest Threat to Societyhttps://www.independent.co.uk/news/uk/home-news/why-ageing-population-greatest-threat-society-5361944.html

3. Dementia, World Health Organizationhttps://www.who.int/news-room/fact-sheets/detail/dementia

4. Alzheimer's disease

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3